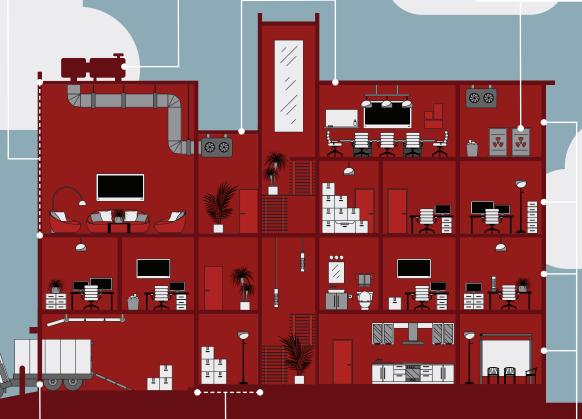
Key Considerations when Assessing an Office Building for Life Sciences Adaptive Reuse

FLOOR-TO-CEILING HEIGHTS

Higher ceiling heights are typically required to accommodate robust building systems.

INFRASTRUCTURE

You'll need to anticipate tenants' potential utility requirements and the logistics of improving the available infrastructure.


MULTI-TENANT USE

Consider whether a building's floor layout can be modified to accommodate multiple tenants.

HAZARDOUS MATERIALS

Consider how many hazardous material control zones will be required per regulatory code, and how they will fit within the building footprint.

LOADING DOCKS

Depending on the building's square footage and anticipated tenant uses, more loading docks may be needed.

COLUMN SPACING

Although 11-foot column spacing is preferred, you may be able to create a flexible floor plan with less-than-ideal column spacing and test-fit design options.

SITE SELECTION

If the first or second project in a submarket, you will need to overcome concerns of isolation from the larger life sciences community.

FLOOR PLATES

Low-rise buildings with generous floorplates tend to be the most adaptable.

REDGATE